If Q(x) had two roots in the interval (0,1), then Q'(x) would have a root in the interval (0,1) (by Rolle's theorem and our remarks about roots with multiplicity), which is not the case. Similarly Q(x) cannot have more than one root greater than $\frac{3}{2}$. Since Q(x) has at least three positive roots, though, it has a root in the interval $[1,\frac{3}{2}]$. Looking at Q'(x) we can see that Q(x) is decreasing on this interval and we obtain $Q(1) \geq 0$ and therefore $p \leq \frac{5}{2}$, which finishes the proof.

The bound can be obtained by setting one variable to $\frac{5}{2}$ and the others to 1.

4098. Proposed by Ardak Mirzakhmedov.

Let α, β and γ be acute angles such that $\alpha + \beta = \gamma$. Show that

$$\cos \alpha + \cos \beta + \cos \gamma - 1 \ge 2\sqrt{\cos \alpha \cdot \cos \beta \cdot \cos \gamma}.$$

We received six correct submissions. We present the solution by Arkady Alt.

Note first that for all $a, b, c, d \in \mathbb{R}$, we have $(ac-bd)^2 - (ad-bc)^2 = (a^2-b^2)(c^2-d^2)$, so $(a^2-b^2)(c^2-d^2) \le (ac-bd)^2$. In particular, if a > b > 0 and c > d > 0, then $ac-bd \ge \sqrt{a^2-b^2} \cdot \sqrt{c^2-d^2}$. (1)

Next,

$$\cos \alpha + \cos \beta + \cos \gamma - 1 = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2} - 2\sin^2 \frac{\gamma}{2}$$
$$= 2\left(\cos \frac{\gamma}{2} \cdot \cos \frac{\alpha - \beta}{2} - \sin \frac{\gamma}{2} \cdot \sin \frac{\alpha + \beta}{2}\right). \tag{2}$$

Since
$$\frac{\alpha+\beta}{2} = \frac{\gamma}{2} \in (0, \frac{\pi}{4})$$
 we have
$$\cos \frac{\alpha-\beta}{2} > \cos \frac{\alpha+\beta}{2} = \cos \frac{\gamma}{2} > \sin \frac{\gamma}{2}.$$

Hence, if we let

$$a = \cos \frac{\gamma}{2}, b = d = \sin \frac{\gamma}{2}$$
 and $c = \cos \frac{\alpha - \beta}{2}$,

then a > b > 0 and c > d > 0 so applying (1) we obtain

$$\cos\frac{\gamma}{2} \cdot \cos\frac{\alpha - \beta}{2} - \sin\frac{\gamma}{2} \cdot \sin\frac{\alpha + \beta}{2} \ge \sqrt{\cos^2\frac{\gamma}{2} - \sin^2\frac{\gamma}{2}} \cdot \sqrt{\cos^2\frac{\alpha - \beta}{2} - \sin^2\frac{\alpha + \beta}{2}}$$

$$= \sqrt{\cos\gamma}\sqrt{\frac{1}{2}\left(1 + \cos(\alpha - \beta) - (1 - \cos(\alpha + \beta)\right)}$$

$$= \sqrt{\cos\gamma}\sqrt{\cos\alpha \cdot \cos\beta}$$

$$= \sqrt{\cos\alpha \cdot \cos\beta \cdot \cos\gamma}.$$
(3)

Substituting (3) into (2), we then have

$$\cos \alpha + \cos \beta + \cos \gamma - 1 \ge 2\sqrt{\cos \alpha \cdot \cos \beta \cdot \cos \gamma}$$

thus completing the proof.